ELECTRONIC PROJECTS | GADGETS NEWS | LATEST TECHNOLOGY | CONSUMER ELECTRONICS
Showing posts with label 555 Timer. Show all posts
Showing posts with label 555 Timer. Show all posts
SMART FLUID LEVEL INDICATOR ELECTRONICS PROJECT
Most of the fluid level indicator circuits use a bar graph or a seven-segment display to indicate the fluid level. Such a display using LEDs or digits may not make much sense to an ordinary person.
The circuit presented here overcomes this flaw and displays the level using a seven-segment display— but with a difference. It shows each level in meaningful English letters. It displays the letter E for empty, L for low, H for half, A for above average, and F for full tank .
The circuit is built using CMOS ICs. CD4001 is a quad. NOR gate and CD4055 is a BCD to seven segment decoder and display display driver IC. This decoder IC is capable of producing some English alphabets besides the usual digits 0 through 9.
The BCD codes for various displays are given in Table I. The BCD codes are generated by NOR gates because of their interconnections as the sensing probes get immersed in water. Their operation being self-explanatory is not included here.
TABLE I
D C B A DISPLAY
L L L L 0
L L L H 1
— — — — 2
— — — — 3
— — — — 4
— — — — 5
— — — — 6
— — — — 7
H L L L 8
H L L H 9
H L H L L
H L H H H
H H L L P
H H L H A
H H H L —
H H H H BLANK
Note that there is no display pattern like E or F available from the IC. Therefore to obtain the pattern for letters E and F, transistors T1 and T2 are used. These transistors blank out the unnecessary segments from the seven-segment display.
It can be seen that letter E is generated by blanking ‘b’ and ‘c’ segments of the seven-segment display while it decodes digit 8. Letter F is obtained by blanking segment ‘b’ while it decodes letter P.
As CMOS ICs are used, the current consumption is extremely low. This makes it possible to power the circuit from a battery. The input sensing current through the fluid (with all the four probes immersed in water) is of the order of 70 μA, which results in low rate of probe deterioration due to oxidation as also low levels of electrolysis in the fluid.
Note: This circuit should not be used with inflammable or highly reactive fluids.
555 TIMER BASICS AND TUTORIALS
WHAT IS 555 TIME AND HOW 555 TIMER WORKS?
Creating a Pulse
The 555 is made out of simple transistors that are about the same as on / off switches. They do not have any sense of time. When you apply a voltage they turn on and when you take away the voltage they turn off. So by itself, the 555 can not create a pulse.
The way the pulse is created is by using some components in a circuit attached to the 555 (see the circuit on the next page). This circuit is made of a capacitor and a resistor. We can flip a switch and start charging the capacitor.
The resistor is used to control how fast the capacitor charges. The bigger the resistance, the longer it takes to charge the capacitor.
The voltage in the capacitor can then be used as an input to another switch. Since the voltage starts at 0, nothing happens to the second switch. But eventually the capacitor will charge up to some
point where the second switch comes on. The way the 555 timer works is that when you flip the first switch, the Output pin goes to Vcc (the positive power supply voltage) and starts charging the capacitor.
When the capacitor voltage gets to 2/3 Vcc (that is Vcc * 2/3) the second switch turns on which makes the output go to 0 volts.
The pinout for the 555 timer is shown below:
Pin 2 (Trigger) is the 'on' switch for the pulse. The line over the word Trigger tells us that the voltage levels are the opposite of what you would normally expect. To turn the switch on you apply 0 volts to pin 2.
The technical term for this opposite behavior is 'Active Low'. It is common to see this 'Active Low' behavior for IC inputs because of the inverting nature of transistor circuits.
Pin 6 is the off switch for the pulse. We connect the positive side of the capacitor to this pin and the negative side of the capacitor to ground. When Pin 2 (Trigger) is at Vcc, the 555 holds Pin 7 at 0 volts (Note the inverted voltage).
When Pin 2 goes to 0 volts, the 555 stops holding Pin 7 at 0 volts. Then the capacitor starts charging. The capacitor is charged through a resistor connected to Vcc. The current starts flowing into the capacitor, and the voltage in the capacitor starts to increase.
Pin 3 is the output (where the actual pulse comes out). The voltage on this pin starts at 0 volts. When 0 volts is applied to the trigger (Pin 2), the 555 puts out Vcc on Pin 3 and holds it at Vcc until
Pin 6 reaches 2/3 of Vcc (that is Vcc * 2/3). Then the 555 pulls the voltage at Pin 3 to ground and you have created a pulse. (Again notice the inverting action.) The voltage on Pin 7 is also pulled to ground, connecting the capacitor to ground and discharging it.
Seeing the pulse
To see the pulse we will use an LED connected to the 555 output, Pin 3. When the output is 0 volts the LED will be off. When the output is Vcc the LED will be on.
Place the 555 across the middle line of the breadboard so that 4 pins are on one side and 4 pins are on the other side. (You may need to bend the pins in a little so they will go in the holes.)
Leave the power disconnected until you finish building the circuit. The diagram above shows how the pins on the 555 are numbered. You can find pin 1 by looking for the half circle in the end of the chip. Sometimes instead of a half circle, there will be a dot or shallow hole by pin 1.
Before you start building the circuit, use jumper wires to connect the red and blue power rows to the red and blue power rows on the other side of the board. Then you will be able to easily reach Vcc and Ground lines from both sides of the board. (If the wires are too short, use two wires joined together in a row of holes for the positive power (Vcc) and two wires joined together in a different row of holes for the ground.)
Connect Pin 1 to ground.
Connect Pin 8 to Vcc.
Connect Pin 4 to Vcc.
Connect the positive leg of the LED to a 330 ohm resistor and connect the negative end of the
LED to ground. Connect the other leg of the 330 ohm resistor to the output, Pin 3.
Connect Pin 7 to Vcc with a 10k resistor (RA = 10K).
Connect Pin 7 to Pin 6 with a jumper wire.
Connect Pin 6 to the positive leg of the 220uF Capacitor (C = 220uF). (You will need to bend the positive (long leg) up and out some so that the negative leg can go in the breadboard.
Connect the negative leg of the capacitor to ground.
Connect a wire to Pin 2 to use as the trigger. Start with Pin 2 connected to Vcc.
Now connect the power. The LED will come on and stay on for about 2 seconds. Remove the wire connected to Pin 2 from Vcc. You should be able to trigger the 555 again by touching the wire connected to pin 2 with your finger or by connecting it to ground and removing it. (It should be about a 2 second pulse.)
Making it Oscillate
Next we will make the LED flash continually without having to trigger it. We will hook up the 555 so that it triggers itself. The way this works is that we add in a resistor between the capacitor and the discharge pin, Pin 7.
Now, the capacitor will charge up (through RA and RB) and when it reaches 2/3 Vcc, Pin 3 and Pin 7 will go to ground. But the capacitor can not discharge immediately because of RB. It takes some time for the charge to drain through RB.
The more resistance RB has, the longer it takes to discharge. The time it takes to discharge the capacitor will be the time the LED is off.
To trigger the 555 again, we connect Pin 6 to the trigger (Pin 2). As the capacitor is discharging, the voltage in the capacitor gets lower and lower.
When it gets down to 1/3 Vcc this triggers Pin 2 causing Pin 3 to go to Vcc and the LED to come on. The 555 disconnects Pin 7 from ground, and the capacitor starts to charge up again through RA and RB.
To build this circuit from the previous circuit, do the following.
Disconnect the power.
Take out the jumper wire between Pin 6 and Pin 7 and replace it with a 2.2k resistor (RB =2.2K).
Use the jumper wire at pin 2 to connect Pin 2 to Pin 6.
Now reconnect the power and the LED should flash forever (as long as you pay your electricity bill).
Experiment with different resistor values of RA and RB to see how it changes the length of time that the LED flashes. (You are changing the amount of time that it takes for the Capacitor to charge and discharge.)
Formulas
These are the formulas we use for the 555 to control the length of the pulses.
t1 = charge time (how long the LED is on) = 0.693 * (RA + RB) * C
t2 = discharge time (how long the LED is off) = 0.693 * RB * C
T = period = t1 + t2 = 0.693 * (RA + 2*RB) * C
Frequency = 1 / T = 1.44 / ((RA + 2 * RB) * C)
t1 and t2 are the time in seconds. C is the capacitor value in Farads. 220uF = 0.000220 F. So
for our circuit we have:
t1 = 0.693 * (10000 + 2200) * 0.000220 = 1.86 seconds
t2 = 0.693 * 2200 * 0.000220 = 0.335 seconds
T = 1.86 + 0.335 = 2.195 seconds
Frequency = 0.456 (cycles per second)
TOUCH ACTIVATED ALARM SYSTEM BASIC ELECTRONIC PROJECT
TOUCH ACTIVATED ALARM SYSTEM PROJECT USING 555 TIMER
This is a basic electronic project of Touch Activate Alarm System using a 555 timer. The 555 can be a LM, NE, or MC(cmos) type, they are all pin-compatible. **C1/C2's working voltage should be increased to 25V if you decide to go with a 12V power source. Below is the schematic diagram.
Parts List
R1 = 100K
D1 = 1N4004
U1 = 555 Timer*
R2 = 56K
C1 = 47μF/16V**
R3 = 10M
C2 = 33μF/16V**
R4 = 220K
T1 = 2N3904, or equivalent
P1 = 100K
Re1 = Relay***
Rule of thumb: the working voltage of capacitors are at least double the supplied voltage, in other words, if the powersource is 9Volt, your capacitor(s) is at least 18V. Transistor T1 can be any approximate substitute. *** Use any suitable relay for your project and if you're not tight on space, use any size. I've build this particular circuit to prevent students from fiddling with the security cameras in computer labs at the
University I am employed. I made sure the metal casing was not grounded. But as the schematic shows you can basically hook it up to any type of metal surface. I used a 12-vdc power source. Use any suitable relay to handle your requirements.
A 'RESET' switch (Normally Closed) can be added between the positive and the 'arrow-with-the-+'. The trigger (touch) wire is connected to pin 2 of the 555 and will trigger the relay, using your body resistance, when touched. It is obvious that the 'touching' part has to be clean and makes good contact with the trigger wire.
This particular circuit may not be suitable for all applications. Just in case you wonder why pin 5 is not listed in the schematic diagram; it is not really needed. In certain noisy conditions a small ceramic capacitor is placed between pin 5 and ground. It does no harm to add one or leave it out.
NOTE: For those of you who did not notice, there is an approximate 5-second delay build-in before activation of the relay to avoid false triggering, or a 'would-be' thief, etc.
AGAIN, make sure the latch is not touching anything 'ground' or the circuit just keeps resetting itself and so will not work. My shed has wooden doors so works fine. If you can not get yours to work, check the trigger input, verify there is some sort of signal coming from output pin 3 play with the value of R3.
Subscribe to:
Posts (Atom)